
ECE 150 Fundamentals of Programming

Douglas Wilhelm Harder, M.Math. LEL
Prof. Hiren Patel, Ph.D., P.Eng.
Prof. Werner Dietl, Ph.D.

© 2018 by Douglas Wilhelm Harder and Hiren Patel.
Some rights reserved.

Catalan numbers

2
Catalan numbers

Outline

• In this lesson, we will:
– Look at the definition of the Catalan numbers and their application
– Consider the various formulas for these numbers
– Implement these formulas in C++
– Observe that:

• Some formulas are incredibly (exponentially) slow
• Others are just slow
• Most result in overflow
• The most efficient algorithm is the last formula listed

3
Catalan numbers

Catalan numbers

• The nth Catalan number, Cn, equals:
– The number of different binary trees with n nodes

• Useful in specific tree algorithms
– The number of ways that a convex polygon with n + 2 sides can be

subdivided into triangles
• Useful in tessellations and graphics

– The number of ways that n pairs of parentheses can appear in such a
way that they are properly nested

()() or (()) ()()(), (())(), (()()), ()(()), or ((()))
• Useful for compilers and programming languages

4
Catalan numbers

Catalan numbers

• There are numerous ways of defining Catalan numbers:

– However, all of these simplify to an integer

• There are recursive definitions, as well:

– This is approximately the order they are listed
on the Wikipedia page as of March, 2022

()
() 2

2 2 2 2 !1
11 ! 1 !

n

n
k

n n n n n kC
n n nn n n k=

      +
= = − = =     ++ +     

∏

0
1

1
0

1
n

n k n k
k

C

C C C
−

− −
=

=

=∑ ()
0

1

1
2 2 1

1n n

C
n

C C
n −

=

−
=

+

5
Catalan numbers

Catalan numbers

• Here are C0 through C36:
1,

1, 2, 5,
14, 42, 132,

429, 1430, 4862,
16796, 58786, 208012,

742900, 2674440, 9694845,
35357670, 129644790, 477638700,

1767263190, 6564120420, 24466267020,
91482563640, 343059613650, 1289904147324,

4861946401452, 18367353072152, 69533550916004,
263747951750360, 1002242216651368, 3814986502092304,

14544636039226909, 55534064877048198, 212336130412243110,
812944042149730764, 3116285494907301262, 11959798385860453492

– Note: C37 ≥ 264 and thus cannot be represented as an unsigned long

6
Catalan numbers

Catalan numbers

• A reminder:
– In most compilers, long is 64 bits
– In some compilers, long is (like int) only 32 bits, and

you must use long long for a 64 bit integer

– You can try one of these:
assert(sizeof(long) == 8);

int main() {
std::cout << "int: " << sizeof (int) << std::endl;
std::cout << "long: " << sizeof (int) << std::endl;
std::cout << "long long: " << sizeof (long long)

<< std::endl;

return 0;
}

7
Catalan numbers

Binomial coefficients

• This is a fast and accurate implementation of binomial coefficients:
unsigned long binomial(unsigned long n, unsigned long k) {

if (k > n) {
return 0;

} else if ((1 >= k) || ((k + 1) >= n)) {
return ((k == 0) || (k == n)) ? 1 : n;

} else {
if (k > (n - k)) {

k = n - k;
}

if (k > 33) {
throw std::range_error{ "The result is not representable by 'unsigned long'" };

}

unsigned long pascal[k - 1];

for (unsigned long i{ 0 }; i < k - 1; ++i) {
pascal[i] = 1;

}

for (unsigned long m{ 1 }; m <= (n - k); ++m) {
pascal[0] += m + 1;

for (unsigned long i{ 1 }; i < k - 1; ++i) {
unsigned long previous{ pascal[i] };

pascal[i] += pascal[i - 1];

if (pascal[i] < previous) {
throw std::range_error{ "The result is not representable by 'unsigned long'" ;

}
}

}

return pascal[k - 2];
}

}

8
Catalan numbers

Implementations

• Let’s implement all of these functions:
unsigned long C(unsigned long n) {

return binomial(2*n, n)/(n + 1);
}

21
1n

n
C

nn
 

=  +  

9
Catalan numbers

Implementations

• Here is a difference of two binomial coefficients:
unsigned long C(unsigned long n) {

return binomial(2*n, n) - binomial(2*n, n + 1);
}

2 2
1n

n n
C

n n
   

= −   +   

() ()
() ()

2 2 2 ! 2 !
1 ! ! 1 ! 1 !

n n n n
n n n n n n

   
− = −   + − +   

() ()
()

2 ! 2 !
! ! ! 1 !
n n n

n n n n n
= −

+

()2 !
1

! ! 1
n n

n n n
 = − + 

()2 ! 1
! ! 1
n

n n n
=

+
21

1
n

nn
 

=  +  

10
Catalan numbers

Implementations

• This is simply a ratio of factorials:
unsigned long C(unsigned long n) {

return factorial(2*n)/factorial(n)
/factorial(n + 1);

}

()
()
2 !

! 1 !n

n
C

n n
=

+

()2 2 !1 1
1 1 ! !

n n
nn n n n

 
= + + 

()
()

2 !
1 ! !
n

n n
=

+

11
Catalan numbers

Implementations

• Here we have a product of n – 1 rational numbers:
unsigned long C(unsigned long n) {

unsigned long result{ 1 };

for (unsigned long k{ 2 }; k <= n; ++k) {
result *= (n + k)/k;

}

return result;
}

– Why can this not work?

2

n

n
k

n kC
k=

+
=∏

12
Catalan numbers

Implementations

• Here we have a product of n – 1 rational numbers:
unsigned long C(unsigned long n) {

unsigned long numer{ 1 };
unsigned long denom{ 1 };

for (unsigned long k{ 2 }; k <= n; ++k) {
numer *= n + k;
denom *= k;

}

return numer/denom;
}

2

n

n
k

n kC
k=

+
=∏

()
()

2 2 !1
1 1 ! !

n n
nn n n

 
= + + 
()() ()2 2 1 2 !

!
n n n

n
− +

=


()() ()
()

2 2 1 2 !
2 1 2 1

n n n
n n

− +
=

− ⋅




() ()1 2 2
1 2 2

n n n nn n n
n n n

+ − + −+ +
=

− −


13
Catalan numbers

Implementations

• Here is the first recursive formula:
unsigned long C(unsigned long n) {

if (n == 0) {
return 1;

}

unsigned long sum{ 0 };

for (unsigned long k{ 0 }; k < n; ++k) {
sum += C(k)*C(n - k - 1);

}

return sum;
}

0
1

1
0

1
n

n k n k
k

C

C C C
−

− −
=

=

=∑

14
Catalan numbers

Implementations

• This defines C0, and then calculates C1, C2, etc.
unsigned long C(unsigned long n) {

unsigned long catalan[n + 1];
catalan[0] = 1;

for (unsigned long i{ 1 }; i <= n; ++i) {
catalan[i] = 0;

for (unsigned long k{ 0 }; k < i; ++k) {
sum += catalan[k]*catalan[i - k - 1];

}
}

return catalan[n];
}

0
1

1
0

1
n

n k n k
k

C

C C C
−

− −
=

=

=∑

15
Catalan numbers

Implementations

• Here is an alternative recursive definition:
unsigned long C(unsigned long n) {

if (n == 0) {
return 1;

} else {
return (2*(2*n - 1)*C(n - 1))/(n + 1);

}
}

– Why place parentheses around 2 (2n – 1)Cn – 1?

()
0

1

1
2 2 1

1n n

C
n

C C
n −

=

−
=

+

()
()

2 !
1 ! !n

n
C

n n
=

+

()()()
() ()

2 2 1 !2 2
1 ! 1 !

n n n
n n n n

− −
=

+ −

()()
()

()()
()

!2 12 2 1
1 ! 1 !

nn n
n n n n

−−
=

+ −

16
Catalan numbers

Implementations

• The same recursive formula, but calculating C1, C2, …
unsigned long C(unsigned long n) {

unsigned long result{ 1 }; // C(0)

for (unsigned int k{ 1 }; k <= n; ++k) {
result = (2*(2*k - 1)*result)/(k + 1);

}

return result;
}

– Again, we need parentheses around 2 (2n – 1)Ck – 1

()
0

1

1
2 2 1

1n n

C
n

C C
n −

=

−
=

+

17
Catalan numbers

Issues with these implementations

• Problems:
– What if , but and ?

– What if but ?

– This formula is purely additive,
and is thus not subject to overflow:

– Now, for n > 5, is not an integer and is not always an
integer…

• Thus, what if , but ?

1

1
0

n

n k n k
k

C C C
−

− −
=

=∑

()2 2 1
1

n
n

−
+

642
2

n
n

 
≥ 

 
6421 2

1
n

nn
 

< +  

() 642 ! 2n ≥
()
()

642 !
2

! 1 !
n

n n
<

+

1

1
nC

n
−

+

() 64
12 2 1 2nn C −− ≥

() 64
1

2 2 1
2

1 n

n
C

n −

−
<

+

642 2
2

1
n n

n n
   

− <   +   

18
Catalan numbers

Issues with these implementations

• The formulas using binomial coefficients or the factorials or ratios of
products are non-starters
– It is very difficult and expensive to ensure that overflow occurs in

neither the numerator or denominator
• The formula can be very expensive

– With the recursive algorithm, it is exponentially slow
– With the array, if you double n, it takes four times longer to run

• Can we do something with the formula ?
– We could find gcd(n + 1, Cn – 1)
– Fortunately, we observe at least one of these is an integer:

1

1
0

n

n k n k
k

C C C
−

− −
=

=∑

()
1

2 2 1
1 n

n
C

n −

−
+

1

1
nC

n
−

+
12

1
nC

n
−

+
13
1

nC
n

−

+

19
Catalan numbers

Optimal implementation
unsigned long C(unsigned long n) {

assert(n <= 36);
unsigned long result{ 1 };

for (unsigned int k{ 1 }; k <= n; ++k) {
unsigned long numer{ 2*(2*k - 1) };
unsigned long denom{ k + 1 };

if (denom%2 == 0) {
numer /= 2;
denom /= 2;

}

if ((numer%3 == 0) && (denom%3 == 0)) {
numer /= 3;
denom /= 3;

}

// This must be a product of three integers, hence, overflow cannot occur
assert(result%denom == 0);
result = numer*(result/denom);

}

return result;
}

()
0

1

1
2 2 1

1n n

C
n

C C
n −

=

−
=

+

20
Catalan numbers

Optimal implementation
unsigned long *C() {

unsigned long *array{ new unsigned long[37] };
array[0] = 1;

for (unsigned int k{ 1 }; k <= n; ++k) {
unsigned long numer{ 2*(2*k - 1) };
unsigned long denom{ k + 1 };

if (denom%2 == 0) {
numer /= 2;
denom /= 2;

}

if ((numer%3 == 0) && (denom%3 == 0)) {
numer /= 3;
denom /= 3;

}

assert(array[k - 1]%denom == 0);
array[k] = numer*(array[k - 1]/denom);

}

return array;
}

()
0

1

1
2 2 1

1n n

C
n

C C
n −

=

−
=

+

This just creates an array of all
37 Catalan numbers that can
be stored as unsigned long

21
Catalan numbers

Observations

• There were multiple formulas presented on the Wikipedia page with
respect to Catalan numbers
– The most useful formula was the last one listed
– Most implementations shown online unfortunately pick the sub-

optimal algorithms for implementing these calculations

• Moral: don’t use the first formula you find online,
and certainly don’t rely on public websites for your algorithms

• These are all implemented online
– Try to guess which is the first formula to fail

22
Catalan numbers

Summary

• Following this lesson, you now
– Understand the definition of Catalan numbers
– Are aware that there are multiple formulas to calculate these
– Also understand that not all these formulas can or should be

implemented
– Observed that the formula that was most suited for an

implementation is the last one listed on Wikipedia, at least

23
Catalan numbers

References

[1] https://en.wikipedia.org/wiki/Catalan_numbers

24
Catalan numbers

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/
for more information.

25
Catalan numbers

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

	Catalan numbers
	Outline
	Catalan numbers
	Catalan numbers
	Catalan numbers
	Catalan numbers
	Binomial coefficients
	Implementations
	Implementations
	Implementations
	Implementations
	Implementations
	Implementations
	Implementations
	Implementations
	Implementations
	Issues with these implementations
	Issues with these implementations
	Optimal implementation
	Optimal implementation
	Observations
	Summary
	References
	Colophon
	Disclaimer

